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Outline
• Overview of turbulence model classes    

and models used by workshop analysts
• Overview of Reynolds stress models
• Effect of turbulence models on one of      

the static cases
• Case 3A (Mach = 0.85, AOA = 5 deg, 

Gas: R-134a)
• Effect of turbulence models on one of      

the dynamic cases
• Case 2 (Mach = 0.74, AOA = 0 deg,  

Gas: R-12)
• Summary and future outlook
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RANS Turbulence Model Classes

• Linear eddy viscosity models (LEVM)

• Based on the Boussinesq assumption

• Involves the solution of one or more partial 
differential equations (could also be algebraic)

• Non-linear eddy viscosity models (NLEVM) and 
algebraic explicit Reynolds stress models (EARSM)

• Based on a linear model as the background model

• Reynolds stress models (RSM, also known as second-
moment closure models)

• Hybrid RANS/LES (sometimes also known as DES)
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Turbulence Models Employed

Code Team CFD code Model Class

A FOI EDGE SA LEVM

B Embraer CFD++ SST LEVM

C NASA east FUN3D SA LEVM

D Technion EZNSS SA, SST, TNT LEVM

E UMich SUMad SA LEVM

F ZHAW EDGE, SU2 SA, ? LEVM, EARSM

G ANSYS Fluent SA, SST LEVM

H ATA Loci SA, SST LEVM
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Turbulence Models Employed

Code Team CFD code Model Class

I NRC OpenFoam

J NLR EDGE

K ITA SU2

L NASA west LAVA

M CDADAPCO STAR-CCM+ SST LEVM

N Milano Various None

O Rafael EZAir TNT LEVM

P Strasbourg
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Spalart Allmaras Turbulence Model

• The standard model heavily relies on calibration to a 
wide range of experimental data

• Has advantage over other models when applied to 
attached flows

• Suffers from excessive separation at junction flows and 
has shortcoming when simulating unsteady flows 
involving considerable separation

• Has many versions, each developed to address certain 
issues
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Example of Excessive Separation around 
Junction: Static Case 3A
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k-ω-SST Turbulence Model

• The original version is considered the standard version

• Also has many versions

• The most popular two equation model

• Like all linear models, the main shortcomings are its 
difficulty to accurately predict unsteady flows involving 
massive separation and flows involving streamline 
curvature
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Reynolds Stress Models

• RSM are not based on the Boussinesq assumption and 
therefore the assumption that the turbulent shearing 
stress is proportional to the rate of mean strain is 
dropped

• Exact transport equations for the Reynolds stresses are 
derived from the Navier-Stokes equation and the 
models are based on the solution of these equations

• The production term does not require approximations
• The production term is primarily responsible for the 

anisotropy and the selective response of turbulence 
to different strain types

• RSM are becoming more affordable



Israeli CFD Center

RSM Varieties Considered

• SSG/LRR-ω (AIAA J. 2015)

• Omega based model

• Uses a blend of two pressure-strain models, the LRR 
model is activated in the near wall region while the 
SSG model is activated further away

• MCL (AIAA J. 1999)

• A modification for compressible flow of the Craft-
Launder closure model (TCL)

• Employs a cubic pressure-strain model

• Topology free (no need for wall distance)
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Predicted Junction Flow by the SSG/LRR-ω 
Model: Static Case 3A
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Turbulence Model Effects on Shock 
Prediction: Static Case 3A
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Turbulence Model Effects on Shock 
Prediction: Static Case 3A
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Turbulence Model Effects on Shock 
Prediction: Static Case 3A
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Turbulence Model Effects
Convergence of Static Case 3A
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Turbulence Model Effects
Convergence of Static Case 3A
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Turbulence Model Effects on Static Case
Inviscid Splitter Plate, MCL Model, Time-Accurate
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Turbulence Model Effects on Static Case
Inviscid Splitter Plate, MCL Model, Time-Accurate
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Turbulence Model Effects on Static Case
Inviscid Splitter Plate, MCL Model, Time-Accurate
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Turbulence Model Effects on Static Case
Inviscid Splitter Plate, MCL Model, Time-Accurate
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Turbulence Model Effects on Static Case
Inviscid Splitter Plate, MCL Model, Time-Accurate
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Turbulence Model Effects
Flutter, Mach = 0.74, AOA = 0.0
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Turbulence Model Effects
Flutter, Mach = 0.74, AOA = 0.0
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Summary

• Results concerning the prediction of the most 
challenging static case may significantly vary (case 3A, 
Mach = 0.85, AOA = 5)
• All LEVM converge to a steady flow
• SA and SGG/LRR-ω fail to predict the correct shock 

locations
• SST predicts the (average?) shock location
• MCL model fails to converge to a steady flow

• Time accurate simulations result in shock 
oscillations that are similar to the experiment

• LEVM have very little effect on flutter case 2
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Future Outlook

• Recent results show that adding a second nonlinear 
term to the linear Reynolds stress tensor — the so 
called quadratic constitutive relation (QCR) — may 
alleviate the excessive junction flow separation problem

• SA-Edwards-QCR2000

• SST-2003-QCR2000

• Since Reynolds stress models become more affordable, 
they may provide other means for accurately simulating 
complex, unsteady, massively separated flows 

• Hybrid models?
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Thank You


